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Abstract

Statistical Shape Models (SSMs) have achieved considerable success in medical image segmentation. A high quality
SSM is able to approximate the main plausible variances of a given anatomical structure to guide segmentation. However,
it is technically challenging to derive such a quality model because: (1) the distribution of shape variance is often nonlinear
or multi-modal which cannot be modeled by standard approaches assuming Gaussian distribution; (2) as the quality
of annotations in training data usually varies, heavy corruption will degrade the quality of the model as a whole. In
this work, these challenges are addressed by introducing a generic SSM that is able to model nonlinear distribution and
is robust to outliers in training data. Without losing generality and assuming a sparsity in nonlinear distribution, a
novel Robust Kernel Principal Component Analysis (RKPCA) for statistical shape modeling is proposed with the aim
of constructing a low-rank nonlinear subspace where outliers are discarded. The proposed approach is validated on two
different datasets: a set of 30 public CT kidney pairs and a set of 49 MRI ankle bones volumes. Experimental results
demonstrate a significantly better performance on outlier recovery and a higher quality of the proposed model as well
as lower segmentation errors compared to the state-of-the-art techniques.
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1. Introduction

Statistical Shape Models (Davies et al., 2008; Heimann
and Meinzer, 2009) have been employed in various appli-
cations of medical image segmentation. Using a set of
shape training data, SSMs learn the significant variabil-
ities of the anatomical structure of interest via principal
component analysis (PCA). The learned prior knowledge
can then be used to effectively boost the performance of
segmentations by projecting any distorted input shape to
the SSM and constraining it to the most plausible modes
of variation. In many practical applications, a high quality
model with a good balance of generalization and specificity
(Davies et al., 2008) significantly contributes to the final
segmentation result. In spite of the considerable success,
it is still challenging to create high quality models due to
the following challenges:

• Multi-modal Shape Distributions: The shape variance
of many biological structures does not follow a simple
Gaussian distribution. For example, the mean shape
of a vertebrae model (Kirschner et al., 2011) is not
meaningful as it does not represent any existing ver-
tebra. The same applies to combined shapes with
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non-uniform structure (cf. Fig. 1-(a)), where linearity
and nonlinearity exist simultaneously in a probabilis-
tic distribution. Nonlinear SSMs have been proposed,
but existing methods cannot accurately project highly
distorted input shapes to the nonlinear shape space in
order to remove non-plausible distortion. A high level
distortion in input shape, however, is likely to occur
with most boundary detection methods.

• Data Corruption: There are many factors influenc-
ing training data quality. Imaging artifacts, inherent
noise in images, non-visible organ boundaries, as well
as inter- and intra-subject variance may lead to non-
ideal delineations which in turn degrade the quality of
SSMs using these delineations as training data. Fur-
thermore, in practice, the amount of available ground
truth data is usually limited since manual delineation
is time-consuming and costly. Severe corruption in
training data therefore has a significant impact on the
whole SSM.

Addressing these challenges, in this work, a generic SSM
framework is proposed that can handle multi-modal shape
distribution and at the same time is robust to corrupted
data. Another advantage of the proposed model in practice
is that its robustness to erroneous data allows for a greater
use of non-ideal training data generation methods for sta-
tistical shape modeling. For example, semi-automatic seg-
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Figure 1: (a) Ankle bone structure (b) Corrupted ankle bone with
anomalous overlap marked by a black square (c) Incomplete ankle
bone with missing areas marked with black squares

mentation approaches could be used to a greater extent
than currently possible to augment the training data base
as the proposed SSM framework can still create high qual-
ity models in the presence of errors.

Over the past decade, SSMs have been very successful
in segmentation tasks which range from organs to lesions,
and from soft tissues to hard tissues. In (Soliman et al.,
2017), a unified model integrating two appearance sub-
models and an adaptive shape sub-model is proposed to
segment pathological and healthy lungs. Albà et al. (Albà
et al., 2016) present a generic SSM for abnormal hearts
segmentation, where the abnormality in patient data is
approximated and constrained by back projection onto
the SSM. In (Okada et al., 2015; Wilms et al., 2017),
SSMs are employed in multi abdominal organ segmenta-
tion based on a limited amount of labeled training data.
Besides organs, SSM as well as its variations have proven
to achieve fairly good results in small region recognition,
e.g. brain ROI (Patenaude et al., 2011) and lung with
tumors (Sun et al., 2012; Wilms et al., 2012). In addi-
tion to the highly deformed soft tissues, segmentation for
articulated joints of hard tissue has attracted extensive
attention as well. For instance, lumbar vertebrae is an
extremely challenging organ for segmentation due to its
high complexity in geometry and large variability of indi-
viduals. For example, a statistical shape decomposition
and conditional model is proposed to overcome such chal-
lenges in (Pereañez et al., 2015), where the key technique
is to reduce the complexity of subparts and to model inner-

relationships. In (Castro-Mateos et al., 2015), an SSM is
used to model the inter-space between individuals to avoid
overlap for accurate segmentation. In (Rasoulian et al.,
2013; Anas et al., 2016), a statistical multi-shape model
joint with a pose model is adopted in vertebrae and wrist
bone segmentation, respectively. Chen et al. (Chen et al.,
2014) build an SSM for wrist bone segmentation incor-
porating the position variation arising from articulations.
Besides the conventional shape model-based segmentation
approaches, SSMs are also incorporated with deep neu-
ral networks to realize challenging segmentation cases. In
(Ma et al., 2018), the SSM is utilized together with the
output from deep neural network in a unified framework
to achieve the CT pancreas segmentation.

The majority of approaches deal with complex geom-
etry by incorporating other machine learning techniques
and/or utilizing integrated shape and pose models under
the assumption of a Gaussian-like distribution. In con-
trast to linear SSMs, the number of approaches exploiting
nonlinear variabilities of shape data is relatively small: in
(Kirschner et al., 2011), Kernel PCA (KPCA) is lever-
aged to capture nonlinear variance of SSMs for vertebrae.
A recent modeling approach is proposed in (von Tycow-
icz et al., 2018), which endows a differential representa-
tion of shape with a nonlinear Riemannian structure for
identification of intra- and inter- population variability.
Many biological structures, however, contain nonlineari-
ties even though the non-linearity might not be always
strong. In these cases, a linear model does not represent
the anatomical structure well. A common approach to
deal with non-linearity is to implicitly map the nonlinear
data to a much higher dimensional linear feature space
with a kernel trick. Examples are KPCA (Mika et al.,
1999; Twining and Taylor, 2001), Kernel Support Vector
Machines (Kwak, 2013), nonlinear compressive sensing (Qi
and Hughes, 2011; Anaraki and Hughes, 2013), and kernel-
ized low rank representation (LRR) (Nguyen et al., 2015;
Xiao et al., 2016).

Nevertheless, data corruption is rarely addressed in sta-
tistical shape modeling, even though it is one of the most
common problems in computer vision. As PCA is sensi-
tive to non-Gaussian outliers, a probabilistic PCA using
an EM algorithm is presented in (Lüthi et al., 2009) and
applied for statistical shape modeling from corrupt data.
Recently, Robust PCA (RPCA) proposed by Candès et al.
(Candès et al., 2011), has become a popular trend in sta-
tistical shape modeling (Gutierrez et al., 2014; Ma et al.,
2016) aiming at handling arbitrarily corrupted data in an
unsupervised manner. By recovering a low-rank subspace
from training data and filtering our the sparsity, RPCA
shows fairly good performance in a wide range of appli-
cations from video surveillance to signal processing. Simi-
larly, the low-rank decomposition technique is also applied
in pathological liver and lung segmentation in (Shi et al.,
2017).

In accordance with the theorem of compressive sensing,
we hypothesize that a latent low-rank nonlinear subspace
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can be recovered from corrupted training data and a com-
pact shape model is derived from the compressed clean
subspace afterwards. This motivates us to perform RPCA
on a nonlinear data distribution where the dominant pat-
terns are captured by KPCA. In our previous conference
work (Ma et al., 2017) presented at MICCAI 2017, a ker-
nelized RPCA is proposed for creating SSMs where the
low-rank modeling is applied on the kernel matrix, which
outperforms linear models in coping with corruption in
nonlinear data. Expanded from the previous work, in
this study, a novel robust KPCA (RKPCA) is proposed
with complete mathematical derivations and explanations
to construct a low-rank nonlinear feature space from non-
ideal training data. It is more generic and robust than the
previous approach. Moreover, we compare our RKPCA
with another popular RKPCA proposed by Nguyen et al.
Nguyen and Torre (2009) that aims to make the pre-image
in KPCA robust from a different perspective. We validate
our approach on two types of datasets: (1) a public set
of 30 kidney pairs aiming at demonstrating the potential
of representing nonlinear distributions; (2) a set of 49 cor-
rupted ankle bones consisting of multiple discontinuous
subparts representing corruption in a complex geometrical
structure.

The rest of the manuscript is organized as follows. In
Section 2, we describe the framework of statistical shape
modeling and highlight the technical problems of RPCA.
In Section 3, we investigate the technical details of KPCA
and present our RKPCA approach and its applicability
in statistical shape modeling which are the main contribu-
tions of this work. In Section 4, experiments are conducted
by evaluating the ability of denoising, the quality of several
constructed shape models as well as analyzing segmenta-
tion results using SSMs on the two test data bases. A
conclusion is presented in Section 5.

2. Limitations of Robust Linear SSM

Given a set of Ns training shapes, each of which is repre-

sented as a point-set di =
(
x1, y1, z1, . . . , xNp , yNp , zNp

)T
using the Point Model Distribution (PDM), where Np in-
dicates the number of landmarks, a column stacked ma-
trix D = [d1, . . . , dNs

] is constructed for training a shape
model. Afterwards, PCA performs eigen-decomposition on
D and extract the first nk modes of variation from eigen-
vectors {αi}i:1...nk

and eigenvalues Λi:1...nk
to describe

the class of shape. However, PCA is extremely sensitive
to non-Gaussian outliers that gives rise to limitations of
many applications. Recently, Candès et al. present the
RPCA that efficiently addresses the limitation of PCA and
achieves satisfactory results in dealing with grossly cor-
rupted data. Taking advantage of the data sparsity, RPCA
assumes that the data matrix D can be decomposed into
a latent clean low-rank subspace X free of outliers and
a sparse component E representing the data sparsity, the

objective of which is formulated as

min
X,E
‖X‖∗ + λ ‖E‖1 , s.t. X + E = D, (1)

This can be seen as minimizing the nuclear norm ‖X‖∗,
a convex relaxation of minimizing rank(X) (Recht et al.,
2010), and l1 norm with a positive trade-off λ. In (Lin
et al., 2010), Lin et al. presented an inexact augmented
Lagrange multiplier (IALM) using an additional quadratic
penalty in contrast to the standard Lagrange multiplier.
We adapt IALM to solve (1) that delivers better perfor-
mance than the dual approach, proximal gradient and the
Exact ALM and formulate the Lagrangian:

L(X,E, Y, µ) = min
X,E
‖X‖∗ + λ ‖E‖1 +

〈Y,D −X − E〉+
µ

2
‖D −X − E‖2F ,

(2)

where Y is multiplier and µ is a positive scalar. The
optimization (2) is decomposed into subproblems where
{X,E, Y, µ} are iteratively updated in turn, and the order
does not affect the optimization. An element-wise soft-
thresholding operator Sτ [·] (Lin et al., 2010) is introduced
for sparsity identification in E and defined as:

Sτ [X] = min(X + τ, 0) + max(X − τ, 0), (3)

which aims to activate the nonlinearity. With unconcerned
variables fixed, a Singular Value Shrinkage (SVS) operator
Dτ [·] presented in (Cai et al., 2010) is adopted to update
X that is defined as:

Dτ [X] = USτ [Σ]V T , X = UΣV T , (4)

where UΣV T is the singular value decomposition (SVD) of
X. The idea behind is shrinking the singular values with a
pre-defined penalty τ to achieve dimensionality reduction
of matrix X. Afterwards, Y and µ are updated with re-
spect to X and E. The procedure is repeated until the La-
grangian optimization converges. Following RPCA, PCA
performs eigen-decomposition on the output constructed
low-rank component XL to extract nk modes of variabili-
ties.

3. Robust Kernel PCA

In this section, we first analyze the technical details of
KPCA, which together with RPCA form the basis of our
proposed RKPCA. Subsequently, a detailed explanation
and derivation of RKPCA is illustrated, the pipeline of
which is plotted in Fig. 2.

In KPCA, a kernel trick κ is introduced to establish
an implicit mapping Φ from the original shape space to
a much higher dimensional feature space X → Φ(X)
where PCA is performed afterwards. In this work, we
adapt the popular Radial Basis Function (RBF) κ(a, b) =

exp(−‖a− b‖2 /(2σ2)) as kernel trick. Given a data ma-
trix X, the gram matrix K = K(X) is constructed with

3



Figure 2: This figure illustrates the pipeline of our RKPCA and the procedure of model back projection: when an unseen shape Z is back
projected onto the model, a set of nonlinear principal components are propagated and further used to approximate the reconstruction ẑ
through the standard pre-image f(z).

each element Kij = κ(xi, xj) = 〈Φ(xi),Φ(xj)〉, where xi
denotes the ith column vector in X. Subsequently, eigen-
decomposition is performed on K to extract the first nk
dominant eigenvectors α and eigenvalues Λ instead of car-
rying out the explicit eigen-decomposition on Φ(X). Each
data point xi ∈ X is projected onto a set of nonlinear
principal components βi =

∑Ns

n=1α
nk
n κ(xi, xn) with di-

mension of nk thereof. Unlike the linear mapping from
original data to feature space in PCA, the reverse map-
ping from kernel space to the original data space is often
ill-posed. Mika et al. (Mika et al., 1999) presented a pre-
image approach to approximate a shape vector z in the
original data space from the kernel space by minimizing:

f(z) = ‖Φ(z)− PnΦ(X)‖2 , (5)

where PnΦ(X) denotes projection from the feature space
Φ(X) to the kernel space spanned by nonlinear principal
components β. z is approximated as the stationary point
by setting the gradient of (5) zero, which is:

∇zf(z) =

Ns∑
i=1

γi
∂

∂z
κ(xi, z) = 0, (6)

where ∂
∂zκ(xi, z) denotes the partial derivative of κ(xi, z)

with respect to z. Therefore, the approximation point is
obtained via:

ẑ =

Ns∑
i=1

γiκ(z, xi)xi

Ns∑
i=1

γiκ(z, xi)

, γi =

nk∑
k=1

βkα
k
i . (7)

3.1. Objective formulation

To seek a low-rank component X that is free of outliers
and represents primary nonlinear patterns, a straight for-
ward solution is to decompose the high-dimensional fea-
ture space by minimizing ‖Φ(X)‖∗ + λ ‖Φ(E)‖1, which

is in favor of the arguments in RPCA (cf. (1)). How-
ever, the implicitness of Φ makes it infeasible to deter-
mine the stationary point of ‖Φ(E)‖1, as the l1 norm is an
element-wise nonlinear activation. To address this issue,
a straightforward way would be minimizing ‖Φ(X)‖∗ +
λ ‖E‖1. However, since Φ(X)TΦ(X) = K(X), ‖K(X)‖∗
can be considered to act as surrogate of ‖Φ(X)‖∗ be-
cause minimizing ‖Φ(X)‖∗ is equivalent to minimizing
tr
(
(Φ(X)TΦ(X))1/2

)
= tr

(
K(X)1/2

)
. Moreover, seeking

the optimal ‖K(X)‖∗ alleviates computational complexity
and its feasibility has been demonstrated in our previous
conference work (Ma et al., 2017), where the data matrix
decomposition is performed on the gram matrix K(X). A
similar idea of minimizing the rank of the gram matrix is
also presented in (Zhang et al., 2016; Wu and Wang, 2017).

Therefore, we aim to seek the best rank of K(X) instead
of explicitly carrying out the unknown dimensional feature
space Φ(X) and present the objective function:

min
X,E

‖K(X)‖∗ + λ ‖E‖1 , s.t. X + E = D. (8)

IALM is employed to form the objective Lagrangian:

L(X,E, Y, µ) = min
X,E
‖K(X)‖∗ + λ ‖E‖1 +

〈Y,D −X − E〉+
µ

2
‖D −X − E‖2F ,

(9)

which is solved under an iteration scheme.

3.2. Updating E(t+1)

With the unconcerned variables {X,Y, µ} fixed, the La-
grangian minE L(E, Y, µ) with respect to the sparse com-
ponent E is written as:

min
E

λ ‖E‖1 +
µ

2

∥∥∥∥E − (D −X(t) +
1

µ
Y
)∥∥∥∥2

F

,
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and E is updated by introducing the soft-thresholding op-
erator (3) that:

E(t+1) = S λ

µ(t)

[
D −X(t) +

1

µ(t)
Y (t)

]
, (10)

where t indicates the iteration that starts from 0.

3.3. Updating K(t+1)

We arrive at optimization to X based on the updated
E(t+1), the Lagrangian L(X,Y, µ) with respect to X is
given by:

min
X
‖K(X)‖∗ +

µ

2

∥∥∥∥X − (D − E(t+1) +
1

µ
Y
)∥∥∥∥2

F

. (11)

It is infeasible to directly apply the singular value shrink-
age Dτ [·] to the Lagrangian, which brings difficulty to giv-
ing the optimal X(t+1). Hence, we decompose the op-
timization (11) into two subproblems with respect to X
at each iteration. Specifically, we consider X a constant
to seek the optimal rank of the gram matrix K(X). We
subsequently derive X(t+1) with the obtained K(t+1) by
reaching the sub-stationary point:
K(t+1) = min

K(X)
‖K(X)‖∗

X(t+1) = min
X
K(X) + µ

2

∥∥∥X − (D − E(t+1) + 1
µY
)∥∥∥2

F

The Lagrangian (11) is separable because the nuclear norm
and Frobenius norm are both convex.

To achieve dimensionality reduction for outlier removal,
at this stage, we apply the low-rank modeling to the gram
matrix, which is similar to the objective function in our
previous conference work (Ma et al., 2017) and formulated
as:

min
K

∥∥∥K(t)
∥∥∥
∗
, s.t. K(t) = K

(
D − E(t+1)

)
. (12)

It is a special case of matrix decomposition denoted as
matrix completion in (Cai et al., 2010). Associated with
a Lagrange multiplier A, the low-rankness of gram matrix
is promoted iteratively byK

(u+1) = Dµk

[
K(t) + 1

µk
A(u)

]
A(u+1) = A(u) + µk

(
K(t) −K(u+1)

) (13)

where u decides the iteration, and {K(u+1), A(u+1)} are
optimal solutions in each iteration and initialized as
K(0) = K(D−E(t+1)) and A(0) = 0 respectively. It should
be pointed out that the sought of low-rankK(t) is an inner
loop embedding in the whole RKPCA optimization. The
procedure of low-rank modeling will converge to an accu-
mulation point where

∥∥K(t) −K(u+1)
∥∥
F
/
∥∥K(t)

∥∥
F
≤ εk,

a theoretical guarantee is provided in (Candès and Recht,
2009). Until the convergence condition for the inner loop
is satisfied, we simply take the final output and denote
K(t+1) = K(u+1), which may not be symmetrical and
full-rank. In this manner, ‖K(X)‖∗ is solved and the up-
dated K(t+1) is then applied to derive X(t+1).

3.4. Updating X(t+1)

For the ease of presentation, we denote the constant
C = µ/2

(
D − E(t+1) + 1/µY

)
. Denote ρ(X) = K(X) +

µ/2 ‖X − C‖2F , X(t+1) is optimized by deriving the sub-
gradient of ρ(X) and assumed to be the stationary point.
The subgradient of ρ(X) is defined as:

∂

∂X
ρ(X) =

∂

∂X
K(X) +

∂

∂X

µ

2
‖X − C‖2F . (14)

The partial derivative of frobenius norm is easily obtained
by:

∂

∂X

µ

2
‖X − C‖2F = µ

(
X − C

)
. (15)

Subsequently, we seek the partial derivative of K(X)
with respect to X. As opposed to the standard pre-image
in (5) which also aims to approximate the projections from
gram matrix to the input space, we leverage the value
of low-rank K(t+1) straightforwardly, implying the new
affinities between data point, instead of using any principal
components derived from eigen-decomposition. Theoret-
ically, computing the derivative of Matrix-by-Matrix can
be accomplished by vectorizing the denominator matrix so
that the Kronecker product will be leveraged to approx-
imate the derivatives of Matrix-by-Scalar. However, this
will raise the computational complexity on account of the
large dimensionality in the derivative matrix. Moreover,
the Kronecker product might cause high sparsity because
each element Kij in the gram matrix is only related to xi
and xj but not to all the members. Addressing this is-
sue, we present a novel solution to the partial derivative
of ∂XK(X) that is defined as:

∂

∂X
K(X) =



Ns∑
i=1

∂κ(xi,x1)

∂X11
. . .

Ns∑
i=1

∂κ(xi,xNs )

∂X1Ns

...
. . .

...
Ns∑
i=1

∂κ(xi,x1)

∂X3Np1
. . .

Ns∑
i=1

∂κ(xi,xNs )

∂X3NpNs

 (16)

More specifically, we sum up all the derivatives related to
Xij in order to avoid the sparsity caused by the Kronecker
product.

Substituting (15) and (16) into (14) and set it to zero,
thus we have:

Ns∑
n=1

K
(t+1)
nj X

(t)
j −

Ns∑
n=1

K
(t+1)
nj + µX

(t)
j − µCj = 0, (17)

where j indicates each column in X and C, namely, X(t+1)

is computed in column-by-column. Therefore, we come to
the final solution:

X(t+1) =

Ns∑
j=1

µC +
Ns∑
n=1

K
(t+1)
nj Xj

µ+
Ns∑
n=1

K
(t+1)
nj

. (18)
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3.5. Convergence analysis

Based on the updated X(t+1) and E(t+1), we up-
date the multiplier Y (t+1) = Y (t) + µ(t)

(
D − X(t+1) −

E(t+1)
)
. Positive scalars µ and µk are updated ex-

actly in the same way that µ(t+1) = min
(
µ(t)(1 + η), µ̄

)
,

and µnewk = min
(
µoldk (1 + η), µ̄k

)
. Analogous to the

inner loop (13), sequence {X,E, Y, µ} converges when∥∥D −X(t+1) − E(t+1)
∥∥
F
/ ‖D‖F ≤ ε. In this way, a low-

rank component XL is recovered from the original data D
where outliers are discarded and KPCA is performed to ex-
tract nonlinear principal components β and corresponding
eigenvectors α for statistical shape modeling.

We summarize the whole procedure of statistical shape
modeling using the proposed RKPCA in Alg. 1.

Algorithm 1 Nonlinear statistical shape modeling via
RKPCA
Input: training matrix D.

Initialize: Y (0), µ(0), µ
(0)
k , t = 0.

while not converged do
Update E(t+1) via (10)
Update K(t) ← K

(
D − E(t+1)

)
Initialize: A(0) = 0,K(0) = K(t), u = 0.

while not converged do

Update {K(u), A(u), µ
(u)
k } via (13)

u = u+ 1
end while

Output: K(t+1) = K(u+1)

Update X(t+1) via (18)
Update Y (t+1), µ(t+1)

t = t+ 1
end while

Perform KPCA on the recovered low-rank matrix XL.
Output: RKSSM(XL|K,α,β).

3.6. Computational complexity analysis

Regarding the computational complexity of the pro-
posed RKPCA, we denote m = 3Np and n = Ns as the
dimension of training matrix for ease of presentation. In
each iteration, the main computational cost comes from
(1) computation of gram matrix with O(mn2) time com-
plexity, (2) singular value shrinking the updated gram ma-
trix from (13) that takes O(n3) and (3) the partial deriva-
tive to update X from (14), which takes O(dmn). Over-
all, the time complexity of Algorithm 1 for one iteration
is O(mn2 + n3). In contrast to the competitive linear
approaches, the main computational complexity of PCA
is from the covariance matrix and eigen-decomposition,
i.e. O(m2n + n3), which of RPCA comes from the SVD
with O(min(mn2,m2n)). Regarding the other nonlinear

modeling techniques, the computational complexity is con-
tributed by the gram matrix computation as well as eigen-
decomposition and/or SVD, and approximately measured
as O(mn2 + n3). That is to say, our RKPCA does not
have much more computational cost when n� m.

4. Evaluation

Our method is evaluated on two representative datasets
involving a set of kidney pairs and a set of ankle bones
with arbitrary erroneous data. The results are com-
pared with five closely pertinent approaches: conven-
tional PCA, RPCA (Candès et al., 2011), KPCA (Mika
et al., 1999), NIPS-09 (the robust KPCA approach
(Nguyen and Torre, 2009)) and our previous conference
work MICCAI-17 (Ma et al., 2017). Even though KPCA
is not bounded by pre-image approaches, we choose the
popular pre-image strategy presented by Mika et al. (Mika
et al., 1999) in this work. In Nguyen and Torre (2009),
Nguyen et al. present a Robust KPCA approach consist-
ing of a nonlinear principal components extraction as de-
scribed in KPCA and a robust pre-image. In contrast to
the objective in (5), the reconstruction Φ(z) of NIPS-09 is
required to be close to PnΦ(z) as well as the input sample
with a balance trade-off constant ω, of which the objective
is formed as minz ‖Φ(x)− Φ(z)‖22 + ω ‖Φ(z)− PnΦ(z)‖22.

First, experiments are conducted to evaluate the abil-
ity of dealing with arbitrarily erroneous data and missing
areas for competitive methods. Furthermore, we create
SSMs using all these methods and evaluate the quality of
the resulting models as well as the accuracy of segmenta-
tion using these SSMs.

4.1. Datasets

To investigate the ability for representing the nonlinear
patterns of the competitive approaches, we create a kidney
SSM with each pair consisting of the left and right kidney
(cf. Fig. 8). Despite that each single kidney (left/right)
follows a linear distribution, the restricted inner space be-
tween two single kidneys brings nonlinearity to the whole,
which is exactly the reason for choosing the data. 30 pub-
lic CT datasets are collected from MICCAI 2015 Challenge
Multi-Atlas (Landman et al., n.d.), with volume sizes vary-
ing from 512 × 512 × 85 to 512 × 512 × 198, the slice
thickness varying from 2.5 to 5.0 mm and in-plane reso-
lution varying from 0.54 mm to 0.98 mm. Moreover, we
utilize 49 internal MRI ankle bone datasets where each an-
kle bone consists of 9 discontinuous subparts with narrow
inner space (cf. Fig. 1-(a)) to validate our approach on
corrupted training data with a complex geometrical struc-
ture. The volume size varies from 384 × 384 × 147 to 512
× 512 × 139 and the voxel size ranges from 0.46 × 0.46
× 0.50 mm3 to 0.49 × 0.49 × 0.50 mm3. Patients were 20
females and 29 males with age interval of 13 to 17 years.

For resolution consistency, kidney images with ground
truth are rescaled to iso-cubic volumes with dimension
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256 × 256 × 256 and the MRI ankle images as well as
ground truth are rescaled to 512 × 512 × 128. Then, we
obtain training shapes by extracting polygon meshes from
the binary ground truth through Marching Cubes. As it
is known that a crucial step before modeling is creating
a groupwise correspondence among all training shapes for
statistics analysis. We employ the point-to-point corre-
spondence approach presented in (Kirschner and Wesarg,
2010), in order to assign the same order of landmarks to
areas with similar features. For the kidney datasets, we
establish correspondence to the left and right kidneys re-
spectively and merge both afterwards. As a result, each
kidney pair contains 4000 landmarks. Similarly, the same
correspondence approach is employed respectively to each
subpart of ankle, e.g. Fibula and Tibia, hence a whole
merged shape of ankle bone consists of 5148 landmarks
in total. Subsequently, the training shapes with corre-
spondence are centered at the origin and aligned via rigid
Procrustes alignment.

4.2. Parameters

Generally speaking, the low-rank modeling techniques
have compelling advantages of being light weight and
trained unsupervised compared to the recent trend deep
neural networks. Even though a number of parameters
and variables are leveraged in our technique, most of them
are tuned related to the training data following certain
rules. Table 1 shows the parameters and descriptions that
are used in RKPCA. It should be pointed out that the
trade-off λ, initialization for multiplier Y , µ, µk, and the
update rate η are all chosen according to the work (Lin
et al., 2010), where ‖D‖2 decides the l2 norm of matrix
D and ‖D‖∞ denotes the maximum absolute value of the
matrix entries.

Table 1: Parameters and Descriptions

Parameter Description Value

λ trade-off in (8) 1√
max(Ns,3Np)

Y (0) the initial Lagrange multiplier D

min
(
‖D‖2,λ−1‖D‖∞

)
η update rate of µ and µk 1.6

µ(0) the initial value of µ 1.25/ ‖D‖2
µ̄ maximum of µ 105

ε terminate value 10−6

µ
(0)
k the initial value of µk 1.25/ ‖K‖2
µ̄k maximum of µk 105

εk terminate value 10−3

It remains to discuss the kernel width σ in RBF trick
that has a vital effect on the underlying degree of the
model. Specifically, a large width reduces the difference
between any two data points leading to a compact feature
space, while a small width enlarges this difference lead-
ing to a model with large variabilities. Essentially, a small
sigma preserves the features while a large sigma is a better

choice for larger dimensionality reduction. To keep consis-
tency with other works, the kernel width σ is computed
by:

σ =
1

2N2
s

Ns∑
i=1

Ns∑
j=1

δ(xi, xj), (19)

where δ(xi, xj) = ‖xi − xj‖ is the average symmetric dis-
tance (ASD) between the shape xi and xj .

4.3. RKPCA for Outlier Recovery

As aforementioned, erroneous data are often arbitrarily
distributed across the training samples and our proposed
RKPCA is supposed to construct approximately the same
subspace from a corrupted training dataset as that from an
uncorrupted one. Under this assumption, experiments are
conducted to assess the ability of outlier recovery for com-
petitive methods. We artificially make the ground truth
datasets corrupted and compare the distances between the
reconstruction of corrupted training data (cf. Fig. 2, XL

denotes the reconstruction in our RKPCA) and its cor-
responding ground truth, i.e. smaller distance indicate
higher accuracy of outlier recovery. To be specific, a pro-
portion of landmarks of all the training shapes are removed
at once, which makes the training data matrix contain ar-
bitrarily distributed missing entries. Through varying the
amount of landmark removal, we have training datasets
that are corrupted to varying degree thereof. In the ex-
periments, (1) the removing entries are randomly selected
per training shape and are different throughout the pop-
ulation; (2) all the missing entries are set to the same
point, however, this location is not restricted and in gen-
eral it does not effect the outlier recovery results; (3) both
datasets of kidney pair and ankle bone are employed in the
outlier recovery evaluation, where the ground truth shapes
are used as the training datasets. We illustrate the results
for kidney pairs for more intuitive comparison.

Since the kidney pairs are pre-centralized, a propor-
tional of points are randomly removed from the original
datasets and these 3D coordinates are set to the origin,
the corresponding triangulation connectivities are changed
thereof (cf. Fig. 3 and Fig. 4). Table 2 reports the
symmetrical distance between the reconstructed shapes
and corresponding ground truth with corruption degrees
ranging from 0% to 50%. The kernel width σ is chosen
as 473.33, 1062.33, 1327.75, 1484.77, 1579.65, 1631.16 in
cases where the proportion of removed landmarks is 0%,
10%, 20%, 30%, 40% and 50% respectively. The paired
t-test under null hypothesis is used as the test statistic
to decide whether the results are statistically significant.
Fig. 3 and Fig. 4 intuitively illustrate the comparisons of
ground truth and reconstructions from competitive meth-
ods, where the corruption degrees are set to 20% and 40%
respectively.

Correspondingly, Table 3 reports the computation time
in application (in second) on Intel Core i7 processor. With
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Table 2: Reconstruction errors (mm) of kidney pairs for different methods and proportion of missing values. The star ∗ indicates a statistically
significant difference between the corresponding results and our method at a significance level α = 0.01.

0% 10% 20% 30% 40% 50%

PCA 2.451 ± 0.380∗ 16.974 ± 4.947∗ 28.174 ± 6.572∗ 35.898 ± 6.691∗ 40.994 ± 7.265∗ 45.330 ± 8.084∗

RPCA 3.302 ± 1.246∗ 5.797 ± 1.932 9.650 ± 5.182∗ 13.862 ± 2.188∗ 20.177 ± 2.665∗ 32.176 ± 3.603∗

KPCA 5.523 ± 5.831∗ 17.938 ± 4.593∗ 24.404 ± 6.979∗ 32.273 ± 7.616∗ 39.718 ± 8.931∗ 44.962 ± 9.869∗

NIPS-09 2.668 ± 12.735∗ 18.430 ± 4.002∗ 21.778 ± 5.004∗ 27.454 ± 7.308∗ 37.932 ± 3.950∗ 45.450 ± 8.709∗

MICCAI-17 2.985 ± 1.463∗ 9.181 ± 2.576∗ 10.844 ± 2.648∗ 13.217 ± 3.168∗ 18.552 ± 2.970∗ 20.639 ± 2.903∗

RKPCA 2.050 ± 0.392 6.310 ± 1.330 8.702 ± 1.863 10.648 ± 2.339 14.032 ± 3.017 18.534 ± 2.692

(a) Corrupted Shape (b) PCA (c) RPCA

(d) KPCA (e) NIPS-09 (f) MICCAI-17

(g) RKPCA

Figure 3: The figure plots a corrupted shape (a) with its reconstructions from competitive models (b) - (g) illustrated from the perspective
of Coronal-Axial view (left) and 3D rendering (right), where the red shape indicates the ground truth. (a) is artificially generated with 20%
of landmarks randomly removed.

(a) Corrupted Shape (b) PCA (c) RPCA

(d) KPCA (e) NIPS-09 (f) MICCAI-17

(g) RKPCA

Figure 4: The figure plots a corrupted shape (a) with its reconstructions from competitive models (b) - (g) illustrated from the perspective
of Coronal-Axial view (left) and 3D rendering (right), where the red shape indicates the ground truth. (a) is artificially generated with 40%
of landmarks randomly removed.
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the increase of proportion of missing entries, the number of
convergence iteration also increases in the nonlinear sub-
space compression in our RKPCA and the pre-image in
other methods. Table 4 reports the computation time with
respect to the scale of training data matrix D ∈ Rm×n,
where the first row indicates the results for kidney pair re-
construction and the second row indicates the results for
ankle bone reconstruction.

Table 3: The computation time (s) for reconstruction of kidney pairs
with various proportion of missing values from 0% to 50% for differ-
ent methods.

Method 0% 10% 20% 30% 40% 50%

PCA 1.846 1.632 1.465 1.791 1.257 1.641

RPCA 2.936 2.927 2.497 2.378 2.759 2.134

KPCA 12.340 36.120 56.120 99.150 60.720 35.520

NIPS-09 13.510 14.312 15.043 15.248 16.309 16.151

MICCAI-17 3.800 7.181 16.520 30.900 45.900 26.920

RKPCA 2.152 2.610 2.923 3.105 3.502 3.370

Table 4: The computation time (s) for reconstruction of kidney pairs
(first row) and ankle bones (second row) using RKPCA with various
proportion of missing values from 0% to 50%, where m,n denote the
scale of data matrix.

m n 0% 10% 20% 30% 40% 50%

12000 30 2.152 2.610 2.923 3.105 3.502 3.370

15444 49 5.190 6.331 5.253 6.320 7.534 5.250

Conclusions can be drawn from Table 2. First of all,
RPCA, MICCAI-17 and our RKPCA all have the ability
to deal with arbitrary outliers. Particularly, RPCA out-
performs in cases of small corruption, whereas, RKPCA
shows significantly better performance when the corrup-
tion degree becomes higher and the power of RPCA de-
grades (cf. Fig. 3-(c), (g) and Fig. 4-(c), (g)). This is
mainly because RKPCA exploits the affinities of each pair
of training data across the population and RPCA exploits
the variance for every dimension individually. RPCA of-
fers a finer reconstruction compared to RKPCA when the
training data is slightly corrupted. However, when the
corruption degree becomes higher, the number of reliable
variables in each dimension is reduced, which makes it
theoretically difficult to learn the dominant variability. In
contrast, RKPCA is still capable to exploit the primary
nonlinear patterns because the impact of outliers is alle-
viated during the kernelizing. Secondly, the reason for
the reconstruction error with none missing values is that,
all the modeling techniques are based on dimensionality
reduction in accordance with compressive sensing where
usually 95% variabilities are retained. Moreover, NIPS-09
delivers slightly better results than KPCA but obviously
worse results than the RKPCA. This is mainly because
NIPS-09 is not robust to unknown arbitrary erroneous
data across the training population. In terms of the in-
tuitive comparison illustrated in Fig. 3 and Fig. 4, where

we find the competitive models eliminate corruptions to
different extent but our RKPCA delivers the best recon-
struction quality overall.

4.4. RKPCA for Missing Area Completion

Besides the erroneous points, training shapes are of-
ten incomplete with missing parts in realistic applications.
Therefore, experiments are conducted to assess the abil-
ity of missing areas completion. Assume that the missing
areas are arbitrarily distributed across the whole shape, a
subset of landmarks are randomly selected and removed
together with their neighboring landmarks (cf. Fig. 5).
In this manner, we artificially make all the ground truth
datasets incomplete and aim to assess the reconstruction
accuracy, namely, closer to the corresponding ground truth
data indicates higher accuracy. In this set of experiments,
about 15 landmarks are randomly selected from each train-
ing shape and all the incomplete shapes are different across
the population. Through varying the area of neighbor-
hood around these selected landmarks, we thus generate
training shapes with different degree of incompleteness (cf.
Fig. 6), which is considered as the ratio between the sum
of missing points and the total number of landmarks.

(a) (b) (c)

Figure 5: This figure plots the procedure of incomplete shapes gener-
ation: based on a ground truth shape (a), several pieces with varying
areas are randomly selected (marked in red in (b)) and removed. An
incomplete shape (c) with missing areas is generated thereof.

(a) (b) (c) (d)

Figure 6: The figure plots the ground truth ankle bone shape (a)
and the artificially generated incomplete shapes with 10%, 20% and
30% removing points in (b), (c) and (d) respectively.

Table 5 reports the reconstruction errors for competitive
methods, where the degree of incompleteness varies from
0% to 50%. For an intuitive view, Fig. 7 illustrates the
reconstructions of incomplete training shapes with 30%
missing areas compared to the ground truth (marked in
red). It can be found that the triangulation connectivities
are changed due to the removal of landmarks. To be spe-
cific, the white pieces in Fig. 7-(a) denote the overlap of
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ground truth and incomplete shape, and the missing land-
marks are close to the central position because the ankle
bones are pre-centralized.

Conclusions can be drawn from Table 5 that RPCA,
MICCAI-17 and our proposed RKPCA have much more
capability of dealing with missing areas among the com-
petitive methods. With the degree of incompleteness in-
creases, nonlinear approach KPCA performs slightly bet-
ter than PCA and RKPCA beats RPCA significantly.

4.5. Model Evaluation

After evaluating the performance of the proposed
RKPCA, we create SSMs using competitive approaches
and assess the model quality where the kidney models are
created using the ground truth datasets and the ankle bone
models are created using the generated corrupted datasets.
Specifically, to make the ankle bone shapes arbitrarily cor-
rupted, we create a SSM with 5 ground truth datasets via
PCA and embed it into an existing segmentation frame-
work (Steger et al., 2014) to re-segment the 49 datasets.
The idea of the segmentation framework is that each land-
mark on the surface is deformed in terms of the adaption
rules, the whole shape is projected on the model after-
wards. Due to the limitation of this segmentation proce-
dure, the segmented shapes may contain corrupted regions
to different extent, e.g. the abnormal overlap in Fig. 1-(b).
Hereafter, the ankle bone SSMs are all derived based on
the generated 49 shapes with arbitrary corruptions, while
the ground truth datasets are used for evaluation.

For an intuitive understanding of the robustness to non-
linearity, we compare the shapes generated from the first
mode of variance for models derived with RPCA and our
RKPCA under the datasets of kidney pair in Fig. 8. It
is apparently seen that the shapes generated from RPCA
model (cf. Fig. 8-(a) left and right) make no sense in
realistic scenarios, where the left kidney is too close to
the right kidney. Note that the variance for linear models
varies in the range

[
−3
√

Λi,+3
√

Λi
]
, for nonlinear models

which varies in the range
[
−
√
NsΛi,+

√
NsΛi

]
as defined

in (Twining and Taylor, 2001), where i = 1 · · ·nk. Simi-
larly, the plotting of the first mode of variance for KPCA
and RKPCA models shown in Fig. 9, which suggests the
robustness to data corruption of the proposed RKPCA.
Obviously it is found that the shapes from KPCA model
still have erroneous areas, e.g. the overlap (cf. Fig. 9-(a)
left) and anomalously deformed subparts (cf. Fig. 9-(a)
right), by contrast, our RKPCA model efficiently elimi-
nates the abnormalities in training data.

The most common measures to quantize the quality of
SSMs are Generalization ability G, Specificity S and Com-
pactness C provided in (Davies et al., 2008). A model
with good generalization is able to represent not only the
trained shapes, but also deviations. In contrast to a gen-
eral model, a specific model represents shapes close to the
training data. Thus it does not represent large variances.
In addition, a model is compact in case it is capable to

describe the model’s probability density function (PDF)
by a small number of variances. Given a set of Ns training
datasets {xi : i = 1 · · ·Ns}, we denote a set of M shapes
{yA : A = 1 · · ·M} randomly generated from the model’s
PDF, which approximately covers the whole PDF of the
model when M →∞. G and S are defined as:
Gm = 1

Ns

Ns∑
i=1

δ(xi, x̃i)

Sm = 1
M

M∑
A=1

min
i
δ(yA, xi)

(20)

where m is the number of modes used to generate the
samples yA from the model’s PDF. Upon a leave-one-out
mode that excluding each of training shapes xi in turn and
then project it onto the model derived with the remaining
datasets Davies et al. (2008), G is measured as the dis-
tance between xi and its reconstruction x̂i thereof. Lower
value of G implies smaller distance between the training
data points and generated samples, namely, a better per-
formance of generalization ability. On the other hand, S
measures the distance from all generated samples to the
closest training data. Smaller values of S indicate the
model is more specific, i.e. a higher quality model. Com-
pactness is computed by Cm =

∑m
i=1 Λi/

∑nk

i=1 Λi, which
measures the relative variance learned by the dominant
modes, i.e. higher ratio indicates better compactness. We
report the G, S and C for the kidney models and ankle
bone models in Fig. 10 and Fig. 11 respectively.

To compute specificity, M = 1000 shapes in total are
randomly drawn from the model PDF. As the models of
the ankle bone are derived based on corrupted training
data, we compute G and S using corresponding ground
truth data {xi} and {yA} generated from model’s PDF.
Fig. 10 shows that our proposed RKPCA consistently
boost the performance of model, in particular, the im-
provement of specificity suggests the considerable ability
in describing nonlinear PDF. On the other hand, Fig. 11
reports a higher quality of RKPCA model in coping with
data corruption, especially in terms of generalization abil-
ity. It should be pointed out that KPCA and NIPS-09
compute the gram matrix in the exact same way, resulting
in the equivalent eigenvalues Λi:1···nk

.

4.6. Segmentation Evaluation

To assess the effect on segmentation accuracy, the de-
rived SSMs are used in two existing segmentation ap-
proaches for CT kidney and MRI ankle bone respectively.
Both approaches are based on hierarchical ASM frame-
works respectively (Erdt et al., 2010; Steger et al., 2014).
Dice Similarity Coefficient DSC, Hausdorff Distance HD,
and Volumetric Similarity V S are used as quality mea-
sures, whereas DSC and V S are listed in percent (larger
values indicate better performance) and HD is given in
millimeters (smaller values indicate better performance).
We utilize the framework presented in (Erdt et al., 2010)
for kidney segmentation which is driven primarily by an
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Table 5: Reconstruction errors (mm) of ankle bones for different methods and degrees of incompleteness. The star ∗ indicates a statistically
significant difference between the corresponding results and our method at a significance level α = 0.01.

0% 10% 20% 30% 40% 50%

PCA 1.567 ± 0.295 5.845 ± 0.357∗ 10.110 ± 1.055∗ 13.724 ± 1.804∗ 16.403 ± 2.266∗ 22.666 ± 3.646∗

RPCA 1.811 ± 0.623∗ 2.740 ± 0.991 6.114 ± 1.285∗ 9.812 ± 2.547∗ 14.516 ± 3.132∗ 19.351 ± 2.126∗

KPCA 5.709 ± 4.594∗ 7.023 ± 4.453∗ 10.496 ± 4.171∗ 14.290 ± 3.737∗ 17.018 ± 3.566∗ 20.296 ± 3.470∗

NIPS-09 3.567 ± 1.891∗ 6.013 ± 2.345∗ 9.897 ± 1.487∗ 13.833 ± 2.157∗ 16.454 ± 2.754∗ 19.491 ± 2.460∗

MICCAI-17 3.409 ± 0.871∗ 5.658 ± 1.806∗ 8.338 ± 2.567∗ 9.614 ± 2.036∗ 11.096 ± 3.780∗ 17.697 ± 2.960∗

RKPCA 1.663 ± 0.196 3.528 ± 1.502 5.981 ± 1.563 7.544 ± 2.268 9.762 ± 3.039 14.950 ± 2.953

(a) Corrupted Shape (b) PCA (c) RPCA

(d) KPCA (e) NIPS-09 (f) MICCAI-17

(g) RKPCA

Figure 7: The figure plots an incomplete ankle bone shape (a) with its reconstructions from competitive models (b) - (g) illustrated from the
perspective of Coronal-Axial view (left) and 3D rendering (right), where the red shape indicates the ground truth. (a) is artificially generated
with 30% of pieces randomly removed.

automatic adaption to local intensity features and a global
shape model back projection. In Table 6 we report the
segmentation results using the competitive models. Our
approach outperforms the other models in all measures.

We utilize the same ankle bone segmentation approach
presented in (Steger et al., 2014) as in our previous con-
ference work (Ma et al., 2017) and report results in Table
7. Our proposed model delivers an improvement from the
previous work MICCAI-17 as well as other competitive
approaches. Fig. 12 illustrates a segmentation result and
several conclusions can be drawn from the segmentation
results: (1) The overlap and abnormal deformation often
occur in the area of the narrow inner space between each
pair of sub-bones due to the poor image adaption, whereas

our model effectively alleviates such corruption; (2) RPCA
model often results in a smooth shape (cf. Fig. 7-(b))
where the discriminative features on the boundary are re-
moved, this is mainly because that RPCA only preserves
the high-frequency data but penalize the low-frequencies
by the l1 norm; (3) generally the nonlinear models outper-
form the linear models, however, the KPCA model shows
worse performance in Table 7 compared to the RPCA
model because KPCA is not robust to the corruption.

5. Discussion and Conclusion

In this work, we propose a novel Robust Kernel Prin-
cipal Component Analysis approach for statistical shape
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Table 6: Kidney Segmentation Results

DSC HD (mm) VS

Mean Min Max Mean Min Max Mean Min Max
PCA 0.761±0.144 0.303 0.961 15.063±7.536 4.898 38.131 0.932±0.080 0.595 0.991

RPCA 0.802±0.064 0.608 0.965 15.962±7.198 4.015 35.818 0.942±0.060 0.620 0.990
KPCA 0.816±0.093 0.559 0.901 14.982±8.825 4.434 39.824 0.949±0.062 0.688 0.993

NIPS-09 0.821±0.083 0.519 0.955 14.074±6.417 5.385 32.802 0.953 ±0.049 0.811 0.997
MICCAI-17 0.863±0.086 0.570 0.960 13.664±8.320 5.385 36.576 0.968±0.071 0.707 0.995
RKPCA 0.905±0.016 0.876 0.945 7.845±1.676 5.099 11.180 0.970±0.018 0.917 0.994

Table 7: Ankle Bone Segmentation Results

DSC HD (mm) VS

Mean Min Max Mean Min Max Mean Min Max
PCA 0.827±0.110 0.596 0.931 9.029±2.454 4.735 16.572 0.852±0.099 0.717 0.953

RPCA 0.863±0.031 0.796 0.952 8.432±2.925 3.021 17.203 0.902±0.034 0.807 0.978
KPCA 0.843±0.038 0.789 0.923 9.018±2.959 3.650 16.698 0.892±0.059 0.797 0.967

NIPS-09 0.872±0.016 0.841 0.944 8.398±2.265 2.960 14.021 0.918±0.057 0.791 0.979
MICCAI-17 0.908±0.033 0.825 0.960 7.881±2.210 4.361 13.210 0.940±0.030 0.886 0.990
RKPCA 0.930±0.025 0.880 0.972 6.115±2.360 2.280 10.753 0.980±0.035 0.894 0.997

←− −→

(a) RPCA model

←− −→

(b) RKPCA model

Figure 8: The variance for the RPCA and RKPCA model, where the
shape in the middle is the mean and the left and right shapes are
generated from −3

√
Λ1 and +3

√
Λ1 for RPCA model, and −

√
NsΛ1

and +
√
NsΛ1 for RKPCA model respectively, with other modes set

to the 0.

modeling with the aim to derive an SSM that is robust
to arbitrarily corrupted data and capable to model both
linear and non-linear variabilities. Experiments are con-
ducted on 30 public CT kidney pair volumes to validate
the models’ capability of representing non-linear features.
Furthermore, 49 MRI ankle bones are used to validate the
models’ capability of handling highly corrupted data. To
investigate the ability for arbitrary outlier recovery, we ar-
tificially generate corrupted datasets by removing a certain
proportion of landmarks and measure the distance between
its reconstructions from competitive models and ground
truth afterwards. Experimental results show a significant
advantage of our RKPCA in coping with arbitrary out-
liers. Moreover, we define an SSM with good quality that
achieves a balance of the generalization ability and speci-

←− −→

(a) KPCA model

←− −→

(b) RKPCA model

Figure 9: The variance for the KPCA and RKPCA model, where
the shape in the middle is the mean and the left and right shapes
are generated from −

√
NsΛ1 and +

√
NsΛ1 for the first mode, with

other modes set to 0.

ficity (Davies et al., 2008). Even though the generalization
ability for the PCA, RPCA kidney models is smaller than
that of our proposed model, the specificity of our model
is significantly smaller than the linear models. Besides,
our models compactness performs better than that of the
others. Hence, we argue that our proposed model outper-
forms the state-of-the-art models in terms of the relevant
measures. Furthermore, the application of our model in
segmentation frameworks also demonstrates higher accu-
racy in comparison to state of the art SSMs.

In addition to the application in statistical shape mod-
eling, our proposed RPCA can also be used in other com-
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Figure 10: Generalization ability G, specificity S and compactness
C for the kidney models.
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Figure 11: Generalization ability G, specificity S and compactness
C for the ankle bone models.

pressive sensing areas, e.g. image and signal denoising, as
it is capable to capture significant nonlinear patterns from
any data matrix and it is robust to arbitrary outliers as
well.

Several limitations do exist in practice, though. Gener-
ally, the training data needs to sufficiently cover the shape
variances of the target object, i.e. as with other statistical
shape modeling approaches, any abnormal shape not con-
tained in the training data will not be modeled correctly.
For example, for unhealthy organs with strong deforma-
tions or large tumors, RKPCA’s robustness to corruptions
may falsely try to correct these abnormalities. The same
applies for significant articulated joint motions which are
not present in the training data. On the other hand, the
generalization ability and compactness of the models need
to be explained more. Refer to Fig. 10, our RKPCA model

lacks the generalization ability when the training datasets
are free of outliers compared to the RPCA model. If it
comes to modeling of normally distributed training data,
RKPCA does not provide major advantages other than
speed in comparison to KPCA. It is worth clarifying that a
model is more general does not mean that it has more abil-
ity to handle the corrupted training data. Since we define
a model with good quality achieves a balance of the gen-
eralization ability and specificity, our model still has high
quality than the others as a whole. Besides, as the RKPCA
model preserves 6 and 8 modes for the kidney pairs and
ankle bones respectively (cf. Fig. 10 and Fig. 11), we
only compare the first 6 and 8 modes for all the models.
Moreover, SSMs are generally sensitive to initialization
and RKPCA is no exception. It might be a problem even
for large objects, e.g. the liver (Erdt et al., 2010; Noraji-
tra and Maier-Hein, 2017). In this work, though, the ini-
tialization does not significantly degrade the segmentation
accuracy. Still, this motivates us to combine our RKPCA
with other approaches like deep neural networks to provide
an accurate initialization method in future work, especially
for small and highly deformable structures. In addition,
since our method is an unsupervised training algorithm,
the reconstruction from the model is not guaranteed to be
exactly the same as the ground truth. To obtain a higher
quality reconstruction in segmentation, in the future work,
we may incorporate some prior knowledge such as partial
label of the shape to make the reconstruction closer to the
ground truth.
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